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Irrelevance of canonical or grand canonical constraints near a random fixed point
in large L systems
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The equivalence between canonical and grand canonical constraints near a random fixed point in a critical
disordered system is confirmed by means of Monte Carlo simulations. The slow approach to the asymptotic
distribution for canonical averaging given by theL (a/n)random term is overcome by simulating long range
correlated diluted Ising systems with (a/n) random5(a2d) for the particular valuesa52 ~linear defects! and
d53 ~three dimensional systems!.
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The critical properties of systems with quenched rando
ness have been intensively studied during recent decade@1#.
One of the most important results is the Harris criterion@2#,
which predicts that weak dilution does not change the ch
acter of the critical behavior near second order phase tra
tions for systems of dimensiond with specific heat exponen
lower than zero,apure,0⇒npure.2/d,npure being the cor-
relation length critical exponent of the pure~undiluted! sys-
tem. This criterion also follows from renormalization grou
~RG! @3–5#, and scaling analyses@6# and it has been ex
tended to the case of strong dilution by Chayeset al. @7#. If
apure.0 then the system fixed point flows from the pu
value toward a new stable fixed point@3–8# at which
a random,0. A typical example of a system withapure.0 is
the three dimensional Ising system. Recently, the Mo
Carlo ~MC! approach has been used to study the dilu
Ising model in two@9#, three@10#, and four dimensions@11#.
The numerical calculations support the existence of a uni
sality class for the randomly diluted three dimensional Is
system different from that of the pure Ising model and ind
pendent of the average density of occupied spin statesp).
The critical exponents obtained by the MC calculations m
be compared with the experimental critical exponents
tained for a random disposition of vacancies in diluted m
nets@12#.

It is important to take into account that the proof of t
Harris criterion by Chayeset al. @7# was performed only for
the grand canonical constraint~where the average density
fixed, but the actual density has fluctuations of ord
N21/2, N being the number of sites!. It has been recently
argued that the proof does not apply in the canonical c
straint, where the total number of occupied sites is kept c
stant and fluctuations are smaller@13#. This means that a
proof of the irrelevance of the kind of constraint near a ra
dom fixed point is fundamental to establish the validity
not of the Harris criterion for all kinds of disorder.
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One way to study if both constraints belong to the sa
universality class is by means of the lack of self-averag
~SA! given by the value of the normalized squared width
a disordered system at criticality. For a system of linear
mensionL and number of sitesN5Ld, any observable sin-
gular propertyX has different values for different random
realizations of the disorder. This means thatX behaves as a
stochastic variable with averageX̄ ~in the following, the
overbar indicates an average over subsequent realization
the dilution and angular brackets indicate the MC averag!.
The variance would then be (DX)2, and the normalized
squared width, correspondingly,

RX5~DX!2/X̄2. ~1!

A system is said to exhibit self-averaging ifRX→0 as L
→` at criticality ~with j@L),j being the correlation length
The lack of self-averaging is characteristic of random s
tems with a universality class different from that of the pu
model. Two random systems are expected to belong to
same universality class if their valuesRX(`)[RX(L→`)
coincide. An important question is whether grand canoni
and canonical constraints have the same value ofRX(`) dif-
ferent from zero or not. This point has been studied rece
using a renormalization group analysis ind542« dimen-
sions, confirming the expectation of a rigorous absence
self-averaging in the three dimensional diluted Ising syst
for both canonical and grand canonical constraints@14,15#. It
follows from the RG analysis that the behavior of the no
malized squared width of grand canonical and canonical~C!
constraints at criticality turns out to be

RX
GC~L !5RX~`!1AGCL2(f/n)random, ~2!

RX
C~L !5RX~`!1ACL2(f/n)random2BCL (a/n)random, ~3!
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f random being the stability exponent of the random syste
corresponding to the first correction to scaling andAGC,AC,
andBC proportionality coefficients depending on the dilutio
characteristics. Clearly, from the point of view of these R
results RX

GC(L→`)5RX
C(L→`)5RX(`), indicating that

the constraint is always irrelevant, even near the rand
fixed point.

A value different from zero for the normalized squa
width of the three dimensional diluted Ising model has a
been obtained by MC simulations@10,16,17#. However, the
correspondence between the grand canonical and cano
values is much more difficult to check, mainly due to t
weakL dependence of the extra termBCL (a/n)random appear-
ing when using the canonical constraint@15#. The L depen-
dence given by the stability exponent is not so import
since 2(f/n) random'20.37 @10#; however, the finite size
effects due toL (a/n)random are much more important sinc
(a/n) random'20.075 @10#. Due to this small exponent on
might expect the decay to zero near the random fixed poin
be extremely slow and inaccessible for present compu
facilities, making it impossible to perform the final calcul
tion of RX(`) for the canonical case. Discussion about t
application of theAe series in the study of the short rang
correlated~SRC! Ising model critical exponents, and in pa
ticular of the stability exponent, may be found in Ref.@12#.

A possible way to overcome this problem is to use a d
ferent way to dilute the system, in particular, to study s
tems built with long range correlation in the disorder. In
cases previously mentioned, frozen disorder was always
duced in a random way, that is, vacancies were distribu
throughout the lattice randomly. Real systems, however,
be realized with other kinds of disorder, in which the v
cancy locations are correlated. In particular, long range c
relation ~LRC! in the disorder has been found by means
x-ray and neutron critical scattering experiments in syste
undergoing magnetic and structural phase transitions@18,19#.
This effect has been modeled by assuming a spatial distr
tion of critical temperatures obeying a power lawg(x)
;x2a for large separationsx @20#. Also, the superfluid tran-
sition in liquid 4He has been studied using LRC syste
@21,22#. In general, these systems behave in a way very
ferent from that in a randomly diluted system with sho
range correlation for the vacancy disposition. The basic
proach to the critical phenomena of LRC systems was es
lished by Weinrib and Halperin@23# almost two decades ago
They found that the Harris criterion can be extended
these cases, showing that fora,d the disorder is irrelevan
if anpure22.0, and that in the case of relevant disorde
different universality class~and a different fixed point! with
correlation length exponentn random52/a and specific hea
exponenta random52(a2d)/a appears. In contrast, ifa.d,
the usual Harris criterion for SRC systems is recovered. L
disorder has been studied also using the Monte Carlo
proach for the particular case of a correlation functiong(x)
5x2a with a52 ~defects consisting of randomly oriente
lines of magnetic vacancies inside a three dimensional Is
system! @24# and in the case of a~critical! thermal disposition
05710
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of the vacancies witha51.97 @25,26#, confirming in both
cases the theoretical predictions of Weinrib and Halperin

Clearly we would like to be able to answer the followin
question: what are the values ofL2(f/n)random andL (a/n)random

in the case of a LRC three dimensional Ising system w
a52?

The expected behavior of the first correction to scal
term is an oscillatory one@23#; however, following recent
MC results, we may consider (f/n) random'1 with the pos-
sible presence of non-negligible higher order correctio
@24#. The expected value of the second term in Eq.~3! may
be obtained following the Weinrib and Halperin results@23#
for the special case ofa52 and d53:(a/n) random5(a
2d)521.

Clearly, this means that finite size effects are going to
much smaller in the case of a LRC system, making it p
sible to perform a calculation capable of showing th
RX

GC(L→`)5RX
C(L→`)5RX(`) with today’s computing

facilities. Following these ideas we now present the num
cal calculations we have performed for LRC and SRC Is
systems.

Extensive Monte Carlo simulations have been perform
using the three dimensional diluted Ising model for the gra
canonical constraint with a dilution probabilityp50.5 and
for the canonical constraint with a fixed value of the conce
tration of vacancies equal toc50.5. All simulations have
been performed for two kinds of disorder. The first kind
the typical SRC system, in which vacancies are distribu
throughout the lattice randomly. The second model is
LRC system with randomly oriented lines of vacancies~we
should say that there are other ways to construct an L
system for a given value ofa using Gaussian noise@27#!.
One important fact of our simulations is that the dispers
of concentrations in the grand canonical constraint is take
be the same in both models~SRC and LRC!.

MC calculations have been done for systems withL
58,16,32 using 10 000 random realizations and withL564
using 2000 random realizations. To calculate the value of
normalized square width@Eq. 1# we perform calculations of
the susceptibilityx5^M2& per spin for a single value of the
temperature using Wolff’s single cluster algorithm@28# ~clus-
ter algorithms allow a significant decrease in the critic
slowing down effect near the critical point@29#!. We use
100 000 Monte Carlo steps for equilibration and 500 0
Monte Carlo steps for each calculation. Results are extra
lated to other temperatures using the histogram reweigh
method@30#. The critical temperature for each value ofL is
obtained in an iterative way. From calculations performed
a first trial temperatureTc

a , and using the histogram re
weighting method, we obtainRx(L) in a regionTc

a6DT.
Within this region we find a temperatureTc

b whereRx(L) has
its maximum.Tc

b is then our next trial temperature and w
repeat the procedure until both the temperature where ca
lations are performed and the temperature where the m
mum is located coincide within our statistical error. No
mally this procedure converges in a few iterations. Using t
method we are able to find the value of the normaliz
4-2
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square width and of the critical temperature for each late
size ~L! using both canonical and grand canonical co
straints.

Results for SRC systems are presented in Fig. 1. Figu
reproduces the kind of behavior previously observed in@15#.
The only difference is that now we consider (p50.5,
c50.5) instead of (p50.6, c50.6). Clearly, canonical and
grand canonical constraints do not merge to the same v
of the normalized square width even forL values as great a
L5100.

The continous line in Fig. 1 is a fitting of the grand c
nonical numerical data for the SRC case using Eq.~2! with a
value forRx(`) equal to 0.15@10#. Canonical data may be
fitted using Eq.~3! and the same asymptotic value~see the
dotted line on Fig. 1!. Note how both fittings are reasonab
using the same value ofRx(`). Since both asymptotic value
might be the same, the two constraints might also belon
the same universality class, but clearly it is impossible
detect it directly using the SRC results.

Results for the LRC case are presented in Fig. 2. In
case clearly both constraints have the same value of the
malized square width (Rx) for L564 within our error bars,
indicating that both constraints lead to results belonging
the same universality class.

Again we have performed a fitting to the numerical da
using Eq. ~2! and Eq. ~3! but in this case fixing a value
(f/n) random51 @24# and leavingRx(`) as a free paramete
Doing so we obtain a valueRx(`)'0.3, approximately
double the one we found for the SRC case.

We may extrapolate our data in Fig. 1 to check theL value
needed to obtain a convergence in the SRC results simila
the one obtained in the LRC case~Fig. 2!. The L value re-
quired is larger than 106.

FIG. 1. Normalized square width for the susceptibility (Rx) vs
system’s length~L! for canonical~white points! and grand canonica
~black points! constraints in the case of a SRC diluted system. C
tinuous and dotted lines are power law fittings performed for
grand canonical and canonical cases, respectively.
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The main difference between the results with canoni
and grand canonical constraints comes from the large fl
tuations in density existing in the grand canonical ca
These fluctuations directly affect the values obtained for
susceptibility at the critical temperature for each realizati
resulting in a different finite size behavior. This behavi
turns out to be same in the LRC system where
fluctuations in the density have nearly no effect sin
2(f/n) random'(a/n) random'21. This equivalence is
clearly shown in Fig. 2 where the behavior of canonical a
grand canonical constraints is almost the same.

In conclusion, we have used Monte Carlo calculations
systems with long range correlation in the disorder to exp
itly confirm the equivalence between canonical and gra
canonical constrains. The extremely slow decay to zero
theL (a/n)random term existing in systems where the dilution
introduced by a random disposition of the vacancies does
appear in systems with long range correlation in the disor
In particular, (a/n) random equal to20.075 in thea5` case
~short range correlated vacancies! turns out to be equal to
21 when using a long range correlated disposition of
vacancies with the particular valuesa52, d53. This sub-
stantial change allows us to confirm explicitly the equiv
lence between canonical and grand canonical constra
even forL values as small asL564.

The irrelevance obtained in our work is independent
the kind of dilution studied, since the fluctuationN21/2 is an
intrinsic property of the grand canonical constraint and h
nothing to do with the kind of disordered applied.

M.I.M. acknowledges financial support at Boston Unive
sity from the Spanish Ministry of Education. The work at th
Universidad Auto´noma de Madrid was supported by th
Spanish Ministry of Education through Grant No. BMF200
0032.
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FIG. 2. Normalized square width for the susceptibility (Rx) vs
system’s length~L! for canonical~white points! and grand canonica
~black points! constraints in the case of a LRC diluted syste
Continuous and dotted lines are power law fittings performed
the grand canonical and canonical cases, respectively.
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