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Irrelevance of canonical or grand canonical constraints near a random fixed point
in large L systems
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The equivalence between canonical and grand canonical constraints near a random fixed point in a critical
disordered system is confirmed by means of Monte Carlo simulations. The slow approach to the asymptotic
distribution for canonical averaging given by thé®*)random term is overcome by simulating long range
correlated diluted Ising systems witkAv),anqom= (2 —d) for the particular valuea=2 (linear defectsand
d=3 (three dimensional systems
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The critical properties of systems with quenched random- One way to study if both constraints belong to the same
ness have been intensively studied during recent de¢adles universality class is by means of the lack of self-averaging
One of the most important results is the Harris critefigh ~ (SA) given by the value of the normalized squared width in
which predicts that weak dilution does not change the chara disordered system at criticality. For a system of linear di-
acter of the critical behavior near second order phase transinensionL and number of sitesl=L¢, any observable sin-
tions for systems of dimensiahwith specific heat exponent gular propertyX has different values for different random
lower than zerog,,,e<0= vy e>2/d, v being the cor-  realizations of the disorder. This means tabehaves as a
relation length critical exponent of the pufendiluted sys-  giochastic variable with averagé (in the following, the
tem. This criterion also follows from renormalization group gyerbar indicates an average over subsequent realizations of
(RG) [3-5], and scaling analyse$] and it has been ex- ihe dilution and angular brackets indicate the MC average

tended to the case of strong dilution by Chagesl. [7]. If  The variance would then beAK)2, and the normalized
apure>0 then the system fixed point flows from the pure squared width, correspondingly,

value toward a new stable fixed poif8—8] at which
@random<0. A typical example of a system witfa, >0 is
the three dimensional Ising system. Recently, the Monte R =(AX)2/Y2 1)
Carlo (MC) approach has been used to study the diluted x '

Ising model in two[9], three[10], and four dimensiongldl].
The numerical calculations support the existence of a unive
sality class for the randomly diluted three dimensional Isin
system different from that of the pure Ising model and inde

IA system is said to exhibit self-averaging Rx—0 asL
— oo at criticality (with ¢>L), ¢ being the correlation length.
“The lack of self-averaging is characteristic of random sys-

pendent of the average density of occupied spin staigs ( temds \INIEP a unlvdersallty ct:lass different fr?n:jtratbor the fuﬁ
The critical exponents obtained by the MC calculations ma)mo €l. Two random systems are expected 1o beiong to the

be compared with the experimental critical exponents ob>ame umversghty class if thgw Yalu&(w)ERX(L_m) .
tained for a random disposition of vacancies in diluted mag-comc'de' An important question is whether grand canonical
nets[12] and canonical constraints have the same valuegt-) dif-

ferent from zero or not. This point has been studied recently
using a renormalization group analysisds4—¢ dimen-
sions, confirming the expectation of a rigorous absence of
rself-averaging in the three dimensional diluted Ising system
for both canonical and grand canonical constrdihts15. It
follows from the RG analysis that the behavior of the nor-
malized squared width of grand canonical and canorical
constraints at criticality turns out to be

It is important to take into account that the proof of the
Harris criterion by Chayest al.[7] was performed only for
the grand canonical constraifwhere the average density is
fixed, but the actual density has fluctuations of orde
N~Y2 N being the number of sitgslt has been recently
argued that the proof does not apply in the canonical con
straint, where the total number of occupied sites is kept con
stant and fluctuations are smallgk3]. This means that a
proof of the irrelevance of the kind of constraint near a ran-
dom fixed point is fundamental to establish the validity or

GC/p \ — GC —(¢lv)
not of the Harris criterion for all kinds of disorder. Ry (L) =Rx(=) +A™L random, 2)
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drandom beiNg the stability exponent of the random systemof the vacancies witta=1.97 [25,26, confirming in both
corresponding to the first correction to scaling afef,AC, cases the theoretical predictions of Weinrib and Halperin.
andBC proportionality coefficients depending on the dilution ~ Clearly we would like to be able to answer the following
characteristics. Clearly, from the point of view of these RGguestion: what are the valueslof (#/")randomandL (*/*)random
results RSC(L—>OO):R§(L—)OC):RX(%), indicating that in the case of a LRC three dimensional Ising system with
the constraint is always irrelevant, even near the randor@=27
fixed point. The expected behavior of the first correction to scaling
A value different from zero for the normalized squareterm is an oscillatory on¢23]; however, following recent
width of the three dimensional diluted Ising model has alsdVIC results, we may conside{ v)randon~1 With the pos-
been obtained by MC simulatiori40,16,17. However, the sible presence of non-negligible higher order corrections
correspondence between the grand canonical and canonid2#]- The expected value of the second term in E).may
values is much more difficult to check, mainly due to thebe obtained following the Weinrib and Halperin resyis]
weakL dependence of the extra tef®fL(*/"random gppear-  for the special case od=2 and d=3:(a/v);andom= (2
ing when using the canonical constraja6). TheL depen- —d)=—1.
dence given by the stability exponent is not so important Clearly, this means that finite size effects are going to be
since — (/1) andon™~ — 0.37 [10]; however, the finite size  much smaller in the case of a LRC system, making it pos-
effects due tol(¢/*)random are much more important since sible to perform a calculation capable of showing that
(/ ¥) andont= — 0-075[10]. Due to this small exponent one R%“(L—)=Ry(L—%)=Rx(=) with today's computing
might expect the decay to zero near the random fixed point téacilities. Following these ideas we now present the numeri-
be extremely slow and inaccessible for present computingal calculations we have performed for LRC and SRC Ising
facilities, making it impossible to perform the final calcula- Systems.
tion of Ry(s) for the canonical case. Discussion about the Extensive Monte Carlo simulations have been performed
application of the\/e series in the study of the short range Using the three dimensional diluted Ising model for the grand
correlated(SRQ Ising model critical exponents, and in par- canonical constraint with a dilution probability=0.5 and
ticular of the stability exponent, may be found in RE#2]. for the canonical constraint with a fixed value of the concen-
A possible way to overcome this problem is to use a dif-tration of vacancies equal to=0.5. All simulations have
ferent way to dilute the system, in particular, to study Sysbeen performed for two kinds of disorder. The first kind is
tems built with long range correlation in the disorder. In all the typical SRC system, in which vacancies are distributed
cases previously mentioned, frozen disorder was always préhroughout the lattice randomly. The second model is an
duced in a random way, that is, vacancies were distribute#RC system with randomly oriented lines of vacancies
throughout the lattice randomly. Real systems, however, cafhould say that there are other ways to construct an LRC
be realized with other kinds of disorder, in which the va-System for a given value cd using Gaussian noisg27]).
cancy locations are correlated. In particular, long range corOne important fact of our simulations is that the dispersion
relation (LRC) in the disorder has been found by means ofof concentrations in the grand canonical constraint is taken to
x-ray and neutron critical scattering experiments in system&e the same in both modelSRC and LRG.
undergoing magnetic and structural phase transifib8s19. MC calculations have been done for systems wlith
This effect has been modeled by assuming a spatial distribu=8,16,32 using 10 000 random realizations and With64
tion of critical temperatures obeying a power lay(x) using 2000 random realizations. To calculate the value of the
~x~2 for large separations [20]. Also, the superfluid tran- normalized square widtfEq. 1] we perform calculations of
sition in liquid “He has been studied using LRC systemsthe susceptibilityy=(M?) per spin for a single value of the
[21,27. In general, these systems behave in a way very diffemperature using Wolff's single cluster algoritfig8] (clus-
ferent from that in a randomly diluted system with shortter algorithms allow a significant decrease in the critical
range correlation for the vacancy disposition. The basic apslowing down effect near the critical poii9]). We use
proach to the critical phenomena of LRC systems was esta-00 000 Monte Carlo steps for equilibration and 500 000
lished by Weinrib and Halperif23] almost two decades ago. Monte Carlo steps for each calculation. Results are extrapo-
They found that the Harris criterion can be extended folated to other temperatures using the histogram reweighting

these cases, showing that fad the disorder is irrelevant Method[30]. The critical temperature for each valuelofs

if avpue—2>0, and that in the case of relevant disorder qobtained in an iterative way. From calculations performed at

different universality clasgand a different fixed pointwith @ first trial temperatureT¢, and using the histogram re-

correlation length exponent, ,,qon=2/a and specific heat weighting method, we obtaifr (L) in a regionT¢=AT.
exponenta,,nqom=2(a—d)/a appears. In contrast, #>d,  Within this region we find a temperatuf@ whereR, (L) has

the usual Harris criterion for SRC systems is recovered. LRGts maximum.T? is then our next trial temperature and we
disorder has been studied also using the Monte Carlo apepeat the procedure until both the temperature where calcu-
proach for the particular case of a correlation functigmi) lations are performed and the temperature where the maxi-
=x"2 with a=2 (defects consisting of randomly oriented mum is located coincide within our statistical error. Nor-
lines of magnetic vacancies inside a three dimensional Isinghally this procedure converges in a few iterations. Using this
system [24] and in the case of @ritical) thermal disposition method we are able to find the value of the normalized
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FIG. 1. Normalized square width for the susceptibilify,j vs FIG. 2. Normalized square width for the susceptibiliy,j vs

system’s lengtfiL) for canonicalwhite point3 and grand canonical system'’s lengthiL) for canonicalwhite points and grand canonical
(black point$ constraints in the case of a SRC diluted system. Con{black point$ constraints in the case of a LRC diluted system.
tinuous and dotted lines are power law fittings performed for theContinuous and dotted lines are power law fittings performed for
grand canonical and canonical cases, respectively. the grand canonical and canonical cases, respectively.

The main difference between the results with canonical

square Widt,h and of the crit.ical temperature for eaph Iateraénd grand canonical constraints comes from the large fluc-
size (L) using both canonical and grand canonical coN-ations in density existing in the grand canonical case.

straints. o _ These fluctuations directly affect the values obtained for the

Results for SRC systems are presented in Fig. 1. Figure dysceptibility at the critical temperature for each realization,
reproduces the kind of behavior previously observedlBi.  resulting in a different finite size behavior. This behavior
The only difference is that now we considep£0.5, turns out to be same in the LRC system where the
¢=0.5) instead of =0.6,c=0.6). Clearly, canonical and fluctuations in the density have nearly no effect since
grand canonical constraints do not merge to the same value (¢/v),andon™ (@/ V) randor™—1. This equivalence is
of the normalized square width even fowvalues as great as clearly shown in Fig. 2 where the behavior of canonical and
L=100. grand canonical constraints is almost the same.

The continous line in Fig. 1 is a fitting of the grand ca- In conclusion, we have used Monte Carlo calculations in
nonical numerical data for the SRC case using@pwith a  Systems with long range correlation in the disorder to explic-
value forR, (=) equal to 0.1910]. Canonical data may be itly confirm the equivalence between canonical and grand
fitted using Eq.(3) and the same asymptotic val¢gee the Canonical constrains. The extremely slow decay t.o zero of
dotted line on Fig. 1 Note how both fittings are reasonable theL(*'"randomterm existing in systems where the dilution is
using the same value &,(=). Since both asymptotic values introduced by a random disposition of the vacancies does not

might be the same, the two constraints might also belong tg§PPear in systems with long range correlation in the disorder.

the same universality class, but clearly it is impossible tgln particular, @/v) andom €qual tq— 0.075 in thea=c case
detect it directly using the SRC results. (short range correlated vacangig¢srns out to be equal to

Results for the LRC case are presented in Fig. 2. In this_1 wh'en using a Iong'range correlated d|sp05|fuon of the
acancies with the particular values=2, d=3. This sub-

case clearly both constraints have the same value of the nofaca! . S .
malized square widthR, ) for L =64 within our error bars stantial change aIIows_ us to confirm exphcﬂl_y the equiva-
S X .~ lence between canonical and grand canonical constraints
indicating thqt both_ constraints lead to results belonging tQyen forl values as small as= 64.
the same universality class. _ The irrelevance obtained in our work is independent of
Again we have performed a fitting to the numerical datay,e ing of dilution studied, since the fluctuatidh Y2 is an

using Eq.(2) and Eq.(3) but in this case fixing a value jyinsic property of the grand canonical constraint and has
(#/v)random=1 [24] and leavingR, () as a free parameter. ,ing 1o do with the kind of disordered applied.
Doing so we obtain a valu®,(»)~0.3, approximately

double the one we found for the SRC case. M.I.M. acknowledges financial support at Boston Univer-

We may extrapolate our data in Fig. 1 to checklthealue  sity from the Spanish Ministry of Education. The work at the
needed to obtain a convergence in the SRC results similar toniversidad Autooma de Madrid was supported by the
the one obtained in the LRC cag€ig. 2). TheL value re-  Spanish Ministry of Education through Grant No. BMF2000-
quired is larger than 0 0032.
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